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Abstract— This article develops a new platoon control strategy
for heterogeneous connected vehicles (CVs) subject to time delays
and external disturbances. Specifically, based on the third-order
vehicle model, a novel platoon controller is developed by embed-
ding the variable time headway (VTH) spacing policy and the
nonlinear motion coupling interactions between CVs. Simultane-
ously, an integral sliding mode (ISM) controller is developed to
resist the disturbances. Then, the condition of asymptotic stability
for the CV platoon and the upper bound of communication delay
are deduced by using the Lyapunov theorem. Also, the string
stability is proved by using the infinity-norm method. Finally,
extensive simulations and co-simulations are provided to show
the validity of the developed controller. Moreover, experiments
with intelligent micro vehicles are conducted further to validate
the practical feasibility of the developed controller.

Index Terms— Connected vehicle, platoon control, spacing
policy, motion coupling interactions, disturbances.

I. INTRODUCTION
A. Motivation

LATOON-BASED driving has recently received wide-

spread attention due to the booming growth of connected
vehicle (CV) technologies [1]-[3]. By taking advantage of
advanced wireless devices, state information can be easily
shared between CVs. Further, through the platoon controller,
CVs in a string can reach consensus and form a stable
formation. That is, all CVs run on the way at the same
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velocity and desired inter-vehicle gap, thus greatly enhancing
traffic efficiency and reducing adverse environmental impacts,
etc. Despite the extensive research and significant progress
in this field, there are still unresolved difficulties, which can
be summarized as the subsequent aspects. Firstly, the spacing
policy is important for the platoon control as it will determine
the rationality of the pre-set inter-vehicle gap and further
affect the traffic safety and road capacity accordingly. While
the two traditionally spacing policies, namely constant time
headway (CTH) policy, and constant spacing (CS) policy,
are not flexible enough, especially for the rapidly changing
velocity situation, at the cost of low traffic flow and vehicle
collisions. Consequently, it is an urgent task to employ a more
effective spacing policy. Secondly, vehicles in the platoon
are not single individuals, and there are motion coupling
interactions between them. Ignoring the interactions may result
in the mismatch between vehicle behavior and traffic flow
theory (e.g., negative velocity and unreasonable acceleration).
Thirdly, time delays caused by unreliable communication,
as well as the external disturbances suffered from complex
environments, should be properly tackled. Otherwise, it may
lead to performance deterioration and instability of the platoon
and even make the platoon break up.

Although one or two of the above issues has been considered
in literature, rarely all of them have been taken into account.
How to design a more efficient platoon controller in this
context is meaningful. To this aim, this article attempts to
develop a new variable time headway (VTH) policy based
platoon controller by considering motion coupling interactions
so as to eliminate the adverse impacts of external disturbances
and time delays.

B. Related Work

There has been a lot of research on the consensus-based con-
trol methods for CV platoon [4]-[18]. According to whether
all vehicles in the platoon share an identical vehicle model,
we can basically classify the consensus-based control schemes
into homogeneous model-based methods and heterogeneous
model-based methods.

1) Homogeneous Vehicle Model-Based Methods: Homoge-
neous vehicle models mainly include the first- and second-
order integrator models. Considering that the first-order model
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is too simple to accurately describe the vehicle behavior and
it is rarely used at present, we mainly discuss the second-
order model-based control methods. Reference [4] proposed a
second-order distributed controller for platoon with heteroge-
neous time delay. Reference [5] designed lateral and longitu-
dinal controllers for the multiple platoons and single platoon,
respectively. Reference [6] investigated the VTH policy-based
platoon controller under switching topology. Reference [7]
developed a controller to investigate the influence of com-
munication abnormality on the vehicle platoon. Reference [8]
designed a controller to handle the platoon instability when
the topology and control gains are changed. However, the
nonlinear motion interactions between vehicles that are crucial
to transportation engineering are neglected in [4]-[8], which
implies that the possibility of negative speed and unreason-
able acceleration, as well as the potential risk of vehicle
collisions, have not been appropriately resolved. Recently, [9]
designed a controller based on dynamic gain to tackle the
issue of vehicle collision avoidance, but the phenomenon of
acceleration amplitude rapid oscillation still exists. References
[10] and [11] developed the controller by considering nonlin-
ear motion coupling interactions between CVs, and showed
that negative velocity and unreasonable acceleration rate are
well avoided.

2) Heterogeneous Vehicle Model-Based Methods: To better
describe some characteristics of the vehicle, such as vehicle
heterogeneity and inertia delay in vehicle powertrain system,
the third-order model is widely used. Reference [12] developed
a controller that factors velocity constraints based on the third-
order model under two different topologies. Reference [13]
developed a linear controller for the platoon with bounded
parametric uncertainty. Reference [14] proposed a distrib-
uted PID controller to handle the platoon in view of both
homogeneous time delays and time-varying model uncertainty.
Reference [15] designed a third-order controller incorporating
the acceleration of the leading vehicle and suggested that
the acceleration can improve the tracking accuracy. Similarly,
in [16], a feedforward-feedback controller considering the
acceleration of the front vehicle was designed based on PF
topology. It concluded that the responsiveness of the platoon is
significantly improved. Reference [17] proposed a third-order
platoon controller by considering the packet drop, time delays
and the acceleration difference. Reference [18] proposed a
third-order CTH policy based platoon controller with hetero-
geneous delay. Nevertheless, the nonlinear motion coupling
interactions between vehicles are not considered in [12]-[18],
resulting in unreasonable acceleration.

In addition, it is noted that two problems lie in the above
works. One is that they assume that the driving scene of the
vehicle is under ideal conditions, so the impact of external
disturbances on the performance of CV platoon was ignored.
The other one is that the rationality and applicability of the
spacing policy are not considered. In fact, due to the uncer-
tainty, vehicles will inevitably be affected by external distur-
bances, which may lead to the amplification of spacing errors
along platoon, causing platoon string instability [19]-[21].
Therefore, necessary measures should be taken to deal with
the impact of external disturbances on the platoon. In addition,
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works in [22]-[25] have also studied the impact of different
spacing policies on vehicle platoon performance. They suggest
that although CS and CTH policies are commonly used in
existing works, however, these policies are implicitly adopted
under the supposition that the platoon always tracks a constant
desired velocity, which is not practical and applicable for
complex driving conditions. On the contrary, the variable
reference velocity is more desirable and general, but it may
lead to ungratified platoon behavior under these two policies
[24] and [25]. Recently, [6] introduced a new VTH spacing
policy, which can timely adjust the desired inter-vehicle gap
for changing reference velocity. It is verified that the VTH
policy has better applicability and potential to improve road
capacity and safety. However, there are little works on platoon
control based on VTH policy. Hence, the VTH policy is
adopted in this article.

C. Contribution

To ensure the tracing performance of vehicle platoon under
the circumstance of changing reference velocity and external
disturbances, we develop a novel CV platoon controller, and
the main contributions are as following threefold:

(i) A more practical third-order VTH-based platoon con-
troller is proposed by considering nonlinear motion coupling
interactions and time delays as well as external disturbances.
By doing so, the desired inter-vehicle gap can be dynamically
adjusted, rather than a fixed value. Therefore, the problems
of inflexible spacing adjustment and low road utilization are
effectively tackled. Furthermore, the disturbance rejection and
the smoothness of the platoon are significantly improved.

(ii)) The asymptotic stability and string stability of the
CV platoon are rigorously proved by utilizing the Lyapunov-
Krasovskii method and infinity-norm method, respectively.
Hence, the stablility and the attenuation of spacing error along
the platoon are simultaneously guaranteed.

(iii) Different from [3]-[6], [9]-[11], [14], and [17], not
only numerical simulations, but also co-simulations in MAT-
LAB/Simulink and PreScan are performed to verify the effec-
tiveness. More importantly, experiments with intelligent micro
vehicles (IMVs) are also conducted to testify the practical
feasibility of the developed platoon controller.

D. Organization

The structure of the article is as follows: Section II gives
the problem statement and preliminary. Section III devel-
ops the controller and performs convergence and string sta-
bility analysis. Section IV presents the simulation results.
Section V shows the co-simulation results. Section VI pro-
vides the experimental results. The last section provides
conclusions.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Graph Theory

Fig. 1 presents the specific CVs platoon scenario consisting
of one leader (noted as i = 0) and N followers (noted as
i = 1,...,N) traveling on a straight road. In this article,
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Fig. 1. Platoon control scheme: (a) CV platoon; (b) PLF topology.

we use the predecessor-leader following (PLF) topology to
represent the information interactions between CVs.

The graph V = {G, A, K} is used to specify the information
topology, where G = {1,2,..., N} and A € G x G are the
set of nodes and edges respectively. K = [kjjInxn is the
adjacency matrix used to describe the connections between
CVs, and k;j = 1 if (i, j) € A; otherwise, k;; = 0. Also,
the pinning matrix B = diag(kio, k20, - . ., kno) is defined to
depict the information link between followers and the leader.
If there is an information interconnection between the leader
and follower i, then k;o = 1; otherwise, k;o = 0.

B. Mathematical Preliminaries

Now, we give some helpful Lemmas as follows.
Lemma 1 ([26]): Suppose there is a polynomial with com-
plex coefficients:

r(s) = 5* + (Re(c1) +iIm(er)s” + (Re(c2)
+iIm(cz))s + (Re(e3) 4+ iIm(c3)) (D
where c1, ¢2, c3 € C, r(s) is Hurwitz stable if and only if the
corresponding principal minor for (1) are positive.

Lemma 2 ([27]): If f : [x,y] — R is a convex function,
the following result holds:

x+ 1 Y x)+ f(
i s [ < T2
2 y—x Jy 2

Lemma 3 (Barbalat Lemma [28]): If (1) R x
R is a uniformly continuous function for + > 0 and

lim [; ¢(r)dr < oo, then lim ¢ (1) = 0.

t—00 [—00

Consider the delay differential equation:

()= flt,x), t=1 (3)

where x(f) € R" is a system state vector; x; is the state
trajectory transfer operator on the interval [—7,0] and the
expression is x;(0) = x(t + ). f(t,x;) fulfills f(z,0) = 0
and is continuous for x;.

Lemma 4 (Lyapunov-Krasovskii Theorem [29]): Suppose
R x C is mapped to a bounded sets of R” by f : RxC — R"
in (3), and assume that y (s), ¥ (s) and £(s) are non-decreasing
functions with y(0) = ¥Y(0) = 0 and y(s), ¥(s) > O for
s > 0. Suppose there is a differentiable and continuous
functional V : R x C — R" that satisfies

1O =V, ¢) < ¥l “4)

and V(t,¢) < —{(ll¢(0)]), then system (4) is uniformly
stable.

Moreover, the solution x = 0 is globally uniformly asymp-
totically stable if lim y(s) = +oo. And it is uniformly

asymptotically stabf: i(%os > 0,¢(s) > 0.

C. Problem Statement

The longitudinal kinematic model of vehicle in the presence
of external disturbances can be described as [19] and [21]:

pi(t) = qi(t)
qi(t) =ri(t) &)
Tiri(t) +ri(t) = u; () + o; (t)

where r;(t), ¢i(t) and p;(¢) are respectively the acceleration,
velocity and position of vehicle i. 7; is the time constant of
the driveline, reflecting the heterogeneity of the CVs in the
platoon. w; () is external disturbance, and u; (¢) is the control
input.

Assumption  1:  The  disturbances are  bounded
([19] and [21]), and there is a positive constant @ that satisfies
i (1)] < @.

The errors related to position, velocity, and acceleration of
vehicles i are defined as:

pi(t) = pi(t) — po(?) +dio
gi(t) = qi(t) — qo(r) (6)
ri(t) = ri(t) —ro(t)
where djo is the desired gap between CVs. Here, the VTH
policy used in [6] is adopted to determine d;q:
dio(t) = ciogg (t) + hiogo(t) + sio @)

where c;o and hjo are positive correlation coefficients, sio is
the standstill distance, and d;; = djo — do.
Now, the aim of the CV platoon control is formulated as:

lim [[pi(®)=0, lim [lg;(1)[[=0, lim [/ ()[[=0  (8)
t—00 1—00 1—>00

Remark 1: According to (7), by selecting appropriate
parameters, the VTH can be transformed into CS (when
cio = 0, hjp = 0) or CTH (when c;o = 0) policy. Therefore,
the VTH policy is more representative and flexible.

III. PLATOON CONTROLLER
A. Platoon Control Algorithm

Firstly, when w; (1) = 0, the following VTH policy-based
platoon controller is developed:

u:mm(t)
N
= — > kijla(qi(t) = Vi(Axij (1)) (9a)
j=1
+p1(qi(t) — q;(t — 7;; (1)) (9b)

+ Ba(pi () — pj(t — 7ij (1)) — 7ij (Dgo(t — 7io (1)) + dij)]
(9¢)

—kiol B1(qi (1) — qo(t — 7io(1))) (9d)

+ B2(pi (1) — po(t — 7io (1)) — 7io(t)qo(t — Tio (1)) + dio)
(%e)

+ p3(ri(t) — ro(t — 7jo(1)))] (9f)
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where a, B1, B2, f3 are control parameters; 7;o(t) and 7;;(t)
are time delays from the leader and vehicle j(;j # i,i,
Jj = 1,...,N), in general 7;;(t) # t;i(t). d;j is defined
as (7), and V;(Ax;;(¢)) is a function utilized to capture the
interactions between CVs, and defined as [11]:

Vi(Axjj (1)) = Wi + Watanh(C1 Ax;; () — C2) (10)

where Wi, Wa, Cy, Co are positive parameter values, and
Ax;;(t) is the average bumper to bumper distance. Suppose
the vehicle length is /., then it can be described as:

Axij(t) = (pj(t — 1;j () — pi(t) — (i — j)) /G — J)
(11)

To reject the disturbances, an ISM controller is developed
and the ISM surface is designed based on (5) and (9) as:

'
w0 = [ (10 + @) —wm@)s a2

Then the ISM controller is developed as
ui'' (1) = —dsgn(n: (1) (13)

Therefore, the controller for CV platoon subjected to exter-
nal disturbances in (5) is formulated as:

i () = ul" (1) + ul (1) (14)

Remark 2: Compared with [6], the controller in (14) has
three extensions: (i) we employ the third-order heterogeneous
vehicle model rather than the second-order model, and the
acceleration error is embedded into the controller, which can
improve the tracking speed, as concluded in [15]-[17]. (ii) the
nonlinear motion coupling interactions between vehicles are
considered, thereby improving the ride comfort, which has
been proved by [10] and [11]. (iii) the external disturbances
are also incorporated, which has more practical significance.

B. Convergence Analysis

The convergence analysis of the platoon is performed in
steady state. It implies that the leader travels at a constant
velocity, i.e., go(t) = 0 ([4] and [6]). Combining (6) and (9),
it follows from (5) that:

N
Fi(t) = —T;" zkij [0(Gi (1) + Vi(Ax[; (1) — Vi(Axij (1))
j=1
+ B1(Gi (1) — G (t — i) + B2 (Bi(t) — Bj(t — 1ij))]
— kiolB1Gi (t) + Papi (1) + B3 ()] — T, '7:(1)  (15)

where Vi(Ax;“j) = qo, Ax;kj () = (dij — qo)tij — I —
IN/G—=J).

Note that Ax7; (1) — Auxij (1) = (pi(1) — pj (t —7ij)) /(i = J),
using Taylor formula to expand (10), and the first-order Taylor
approximation is used to denote V;(Ax;;(t)), the following
result can be obtained:

VI (Ax7 (1)
i—J
x (pi(t) — pj(t — 7ij))

Vi(Axij (1)) = Vi(Axj; (1) —
(16)
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— v/ * . . . .
Define y;; =V, (Axij (t))/(i — j), so we can write (15) as:

N
Fi(t) = -7, Zkij[(a + B1)qi(t) — p1q;(t — tij)
=1
—(ayij + B)(pjt — tij) — pi(?))]
— T, kiol f1di (1) + Popi(t) + B3 ()] — T, 'Fi (1)
(17)
LGNt F

Let error vectors p = [p1,..., py1%, § =41, ...

(71, ....7in1"% & = [p, ¢, 71" and 7,(1),n = 1,...,m(m <
N(N — 1)) corresponding to the sequence {z;;(¢t) : i,j =
1,...,N,i # j}, then we have:
X m
(1) = Coi(t) + D Cake(t — 14(1)) (18)
n=I
with
B On Iy On
Cy = On On Iy R
| -TH, -TH, -TH,
[ O On On
C, = On On On (19)
| TH,, TH,, Oy

where Iy and Oy are identity matrix and zero matrix with
dimension N respectively, and:

T =diag{T, ', 7, ..., Ty"} (20)
H, = diag(hpl, R hpN),
N
hpi = D kij(ayij + p2) + kiofa 1)
j=1
H, = diag(hy1, ..., hyN),
N
hoi = D _kij(a + 1) + kiofr (22)
j=1
H, = diag(hal yhaz, oo han), hai = ki0ﬁ3 (23)
Hn,p = diag(hij,p)NxN, H,, = diag(hij,v)NxN (24)
with
[0, j=i
hijp =10, J#L () # ()
| kij(ayij + B2), tij () = ("),
(0.  j=i
hijo =40, J#i,7() # () (25)
| kij b1, Tij () = ()
From Newton-Leibniz formula, we obtain:
O .
k() =kt — 1,(1)) +/ Kt + s)ds (26)
*Tn(t)

Substituting (18) into (26), we get:

k() =x{t —1,()) + ch/
g=0

0 .
E(t+s—1,(t +5))ds

—1,(t

27)
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Here we have 7o( +5) =0 and C, is defined in (19), so we
know that C,C, = 0 when g # 0, we can write (18) as:

. m O
i(t) = ER(t) = > _ Ay / 7(t + s)ds (28)
n=1 *Tn(t)
with
m ON IN ON
E=Co+» Ci=| Ov Oy Iy (29)
n=1 ~-TH, -TH, -TH,
Oy Oy Oy
Ay, =CyCo=| Oy On On (30)
Oy TH,, THy,,

A m ~ n
where H), = H) — > Hy,p, Hy = H, — > Hpo.

Theorem 1: ThenTtllatric E in (28) i: _Pllurwitz stable if
and only if the parameters satisfy o > 0,81 > 0,2 > 0,
p3 > 0 such that Dy;, Dy; and D3; for E are positive.

Proof: See part A of Appendix.

Theorem 2: Under (9) without disturbances, for (18),
if a, B1, B2, B3 in (9) satisfy Theorem 1 and suppose the time
delay is bounded, i.e., 0 < 7,(t) < d,(d, < 1),0 < 7,(t) < ¥
[14], then we have:

lim x(r) =0 3D
—00
Proof: See part B of Appendix.

Remark 3: Note that the typical average end-to-end com-
munication delay in wireless networks is of the order of
hundredths of a second and it depends on specific applications
and related communication devices [28], [30]. Therefore, it is
reasonable that the time delay is assumed to be bounded.

Theorem 3: Under (14), if 6 > @, then the ISM surface can
reach 7(¢) = 0 in finite time in spite of disturbances.

Proof: See part C of Appendix.

Remark 4: When 7n(t) = #5(t) = 0, it is obvious that
the controller (14) will turn to (9), as summarized in The-
orem 2, (31) still holds in spite of disturbances. Furthermore,
n(t) = i(t) = 0 implies that Jdsgn(x(t)) = w(t). Therefore,
ISM controller (13) is similar to a disturbance observer (DO).

C. String Stability Analysis
Definition 1 ([28]): Origin x; = 0, with i € N and (15),
is string stable if given any € > 0, there exits p > 0 such that

llei (O)lloo < 0 = sup; [lei (oo < p (32)

Theorem4: Under the PLF topology, the string stability of
the CV platoon is ensured under the developed controller (14).
Proof: See part D of Appendix.

IV. NUMERICAL SIMULATION

This section provides simulations to test the performance of
the proposed controller under the PLF topology. According to
Fig. 1, the heterogeneous platoon is composed of seven CVs,
including one leader and six followers.

TABLE I
PARAMETERS FOR THE SIMULATION

Parameter Value Parameter Value
¢ 0.13m’" B Is™
C, 1.59 Bs 5
W, 6.75m/s Ciin 0.0448s”/m
W, 7.91m/s hiiy 0.0019s
a 0.1s™ i 8m
By 6s” 5 3

A. Simulation Setting

In simulation, the time step is 0.0ls. The external dis-
turbances w;(r) = 2.5sin(0.1it + = /i), the initial positions
p(0) =10, 14,28.5,43.5, 59,75, 91.5]Tm. The initial velocity
and acceleration of followers are set to 10m/s and Om/s
respectively. The velocity of the leader is set as (33).

10m/s 0<t<15s
12
DO =1 20ms 70s < 1 < 75s
(22 otherwise

T T 0aa)Ms

Suppose the length of CVs is 4m. The time constants of the
driveline are set to 7; = [0.5,0.4,0.3,0.4,0.35,0.5]Ts (see
[15]). The upper bound 7*is 0.2s according to (49) and all
delays are set to the maximum value. The values of parameters
in (7) and (10) can refer to [6] and [11]. The control gains are
selected based on Theorems 1 and 3. Table I lists the specific
values.

B. Platoon Formation and Maintenance

Two cases are considered: no disturbances and time-varying
disturbances, and the results are presented in Figs. 2-7. The
results suggest that velocities of the followers can reach the
same velocity as the leader, and the platoon moves at the same
velocity eventually (see Figs. 2(a), 4(a) and 6(a)). And the
accelerations of the followers eventually reach to the desired
zero (see Figs. 5(a) and 7(a)). Moreover, the position error in
Fig. 2(c) illustrate that all followers can maintain the desired
distance and track the leader stably.

In conclusion, Figs. 2-7 show that the proposed controller
can effectively eliminate the impact of external disturbances
on the CV platoon, and eventually form a stable platoon.

C. Comparison to Existing Methods

Next, we compare the proposed third-order VTH-based
controller with second-order VTH-based controller in [6] and
third-order CTH-based controller in [18].

The results without disturbances are shown in Figs. 3-5.
The distance profiles (p;—1(t)— p;(¢)) in Fig. 3 show that VTH
spacing policy can adjust the desired inter-vehicle spacing
more flexibly and reasonably according to the vehicle velocity.
Specifically, compared with the CTH-based controller in [18],
the VTH-based controllers in this article and [6] can promote
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Fig. 2. Driving cycle with the proposed controller: (a) velocity error, (b) acceleration error, (c) position error.
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Fig. 6. Velocity with time-varying disturbances: (a) the proposed controller, (b) controller in [6], (c) controller in [18].

a larger safety spacing between CVs at high velocity (when
50s < t < 120s) to avoid collision, and also maintain a
smaller spacing between CVs at low velocity (when Os <
t < 50s and 120s < t < 180s) to increase road capacity.
It implies that when a vehicle is traveling at high velocity
and an emergency occurs, then the braking distance of the
vehicle to stop needs large enough to avoid rear-end collision.
Therefore, under the proposed VTH-based controller, the risk

of rear-end collision will reduce due to the larger inter-vehicle
spacing. On the other hand, when a vehicle is traveling at
low velocity, then the road capacity will improve due to the
smaller inter-vehicle spacing. This illustrates that the VTH
policy is more flexible and effective than the CTH policy.
Comparing the velocity of Figs. 4(a), 4(b) and 4(c), it indicates
that the convergence speed under the controllers (14) and
[18] is faster than that under the controller in [6]. This is
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Fig. 8. Framework of co-simulation.

because the acceleration differences are incorporated into the
controller design and thus effectively improving the tracking
speed of the platoon, which is consistent with the conclusion
in [17]. Moreover, the maximum amplitude of acceleration
in Figs. 5(b) and 5(c) are 2.5m/s> and 2.1m/s?, respectively.
And at the beginning, it is evident that fluctuations exist with
the acceleration in Figs. 5(b) and 5(c). However, under the
proposed controller (14), the acceleration in Fig. 5(a) is smooth
and the maximum amplitude is 1.3m/s>. This is because the
nonlinear motion coupling interactions (9a) between CVs are
incorporated, which could avoid unreasonable acceleration rate
and improve the ride comfort.

The results with time-varying external disturbances are
shown in Figs. 6 and 7. It is obvious that under the proposed
controller (14), the disturbances are effectively suppressed and
the platoon finally reaches a consensus and stable state (see
Figs. 6(a) and 7(a)). On the contrast, under the controllers
developed in [6] and [18], the platoon is always in an unstable
state in terms of Figs. 6(b), 6(c), 7(b) and 7(c), and even
leading to collision and separation. Therefore, the disturbances
rejection and the smoothness of the proposed controller are
better than those in [6] and [18].

V. CO-SIMULATION

This section conducts the co-simulation in MAT-
LAB/Simulink and PreScan to verify the effectiveness
of the proposed controller in a more realistic scenario.
Fig. 8 presents the framework of the co-simulation.
In particular, MATLAB/Simulink is used to build the control
algorithm. PreScan is used to model the traffic scenario

Time(s)

140 160 180

L
100 120
Time(s)

() ©

100120 140 160 180 0 20 40 60 80

Acceleration with time-varying disturbances: (a) the proposed controller, (b) controller in [6], (c) controller in [18].
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Fig. 9. Hierarchical control of vehicle platoon.
and provides the vehicle model, on-board sensors and 3D
visualized display.

To perform the co-simulation, a hierarchical platoon control
strategy is adopted, as depicted in Fig. 9. The upper-level
controller determines the desired acceleration r; 40 according
to the kinematic model (5) and controller (14), then the lower-
level controller generates the desired throttle opening &; /5rdes
or brake pressure P;prrdes by using the following inverse
model [13]:

Tides(t) = Ri(miriges + Ca.iq}(t) + migf)/wr.
Hi,thrdes (t) = MAP?] (we, Ti,des)
Piprkdes(t) = Ri(mitiges + Ca.iq? (t) +migf)/Kp

In the co-simulation, all parameters and condition settings
are the same as in Section IV. The parameters in (34) are
set as: m; = 1532kg, wr,; = 0.9, C4s; = 0.492kg/m,
g= 9.8m/52, f=0.01, R; = 0.3m, and K}, = 426N - m/MPa.
The results are shown in Fig. 10. The velocity in Fig. 10(a)
shows that the following vehicles can track the leading vehi-
cle smoothly, and finally maintain at a constant velocity of
10m/s. Fig. 10(b) shows that the acceleration of all follow-
ers can reach zero eventually, and the maximum acceler-
ation/deceleration amplitude is 1.3m/s2, which is the same
as in Section IV. Besides, Fig. 10(c) indicates that posi-
tion errors of the followers finally converge to zero, that
is, all vehicles finally keep the desired spacing. And the
throttle angle and brake pressure are respectively shown
in Figs. 10(d) and 10(e).

(34)

VI. EXPERIMENT

This section provides experiments with the IMVs to test the
practical feasibility of the developed controller.

A. Experimental Setup

Fig. 11 shows the test platform including three IMVs,
a cloud server, a laptop computer, and a straight road with
length of 16m and width of 0.35m. The IMV is mainly
composed of seven modules, and their corresponding functions
are shown in Table II. The motion data of IMVs received by
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TABLE II C language. Then, the Micro-controller calculates the control
THE FUNCTION OF EACH IMV MODULE commands according to the received data to drive the motor
Module Function and servo. The parameters o; = 0.01, f;; = 4.5, fin = 1.2,

Camera module
Wi-Fi module

Sense and collect road information
Communication between IMVs, and
between IMVs and cloud server.
Detect the distance between IMVs.
Measure the velocity of IMVs.
Measure the acceleration of IMVs.
Drive the Rplidar and process
distance data.

Load the control algorithm.

Rplidar module

Encoder module

Tri-axis acceleration sensor module
E9 card computer module

Micro-controller module

the cloud server through the Wi-Fi module will be stored in
the MySQL database for the following experimental analysis.
B. Experimental Results

To perform the experiments, the proposed controller in (14)
is loaded into the Micro-controller of IMV using the

piz = 35,0 4 and s;;—1 = 0.7m(i = 1,2), other
parameters are the same as those in Table I. According to (7),
the desired spacing between two adjacent IMVs is 0.71m.
And the desired velocity of the leader is set as 0.5m/s. The
initial spacing between IMVs is set as 0.2m and 0.4m, respec-
tively. In the experiment, all IMVs start from a zero initial
state.

Fig. 12 presents the experimental  results.
Figs. 12(a) and 12(c) show that the velocities of following
IMVs are almost at about 0.5m/s, and the inter-vehicle
gaps between IMVs converge to 0.69m, respectively.
Fig. 12(b) shows that the amplitude of acceleration is
acceptable. The experimental results shown in Fig. 12 allow
the verification of the effectiveness of the proposed controller.
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VII. CONCLUSION

In this article, a novel third-order VTH policy based platoon
controller is designed by considering the nonlinear motion
coupling interactions and time delays as well as external dis-
turbances. Then, the asymptotic stability and string stability for
the CV platoon are proved respectively by rigorous theoretical
analysis. Further, extensive simulations and co-simulations in
MATLAB/Simulink and PreScan are performed to validate the
designed controller. More importantly, experiments with IMVs
are further conducted to verify the feasibility of the developed
controller.

The limitations of this study are as follows: the model
used for vehicle is kinematic model, rather than dynamic
model, which cannot fully characterize the vehicle. Moreover,
the IMVs used in the experiment cannot reflect the physical
characteristics of real vehicles roundly. Future efforts can be
made in these aspects.

APPENDIX

A. Proof of Theorem 1

Assuming that 4 is any eigenvalue of matrix E, then the
characteristic polynomial of E is:

det(Llsy — E)

N
=[]+ 77 Giops + DA+ T, a2+ T, b))
i=1
(35)

Then the “north-westerly” minors of the Bilharz matrix [15]
related to (35) are:

Di; = T, ' (kiof3 + 1)

Dai = T, *(kiof3 + (T, (kiofi3 + DRe(a;) — Re(b;))
— T, % (Im(a;))*

D3 = —T; *(Im(q;)*Im(b;) + Re(b;)(Im(a;))*Re(a;))
+ T, (Re(b;))?
— T *(kiop3 + 1) (2(Re(b:))*Re(a;)
+ Im(b;)Re(b;)Im(a;))
+ T (kiofs + 1)*((Re(a;))*Re(b;)
+Im(a;)Re(a;)Re(b;)

+ (kiofis + 1)(Im(b;))?) (36)

where a; and b; are respectively the i-th eigenvalues of H »
and ﬁv. According to Lemma 1, when Dy;, Dy;, D3; are
positive, it can be concluded that E is Hurwitz stable under
the conditions: o > 0, 81 > 0, f» > 0, 3 > 0.

B. Proof of Theorem 2

(Sufficiency): choose the Lyapunov-Krasovskii function:

NGO =000+ Y [ FeBieE 6]
11— ()

with 0 = QT > 0 and B, > 0. Define
h(& (1)) = &1 (1) QR (1) (38)

m t
gt —1%) =&"Qk+ ) / ' (5)Bui(s)ds  (39)
n—=1 t—t*

Then the following condition is satisfied:

h(k (1)) < Vi(&(1)) < g(&(t — 7)) (40)

By differentiating (37) and combining (28) yields:

Vi) = i"(ETQ + QE + ) By)k
n=lI
0

—2%TQ i/
n=1""

— D (1= &)R (= 1 () Bu (1 — 7,(1))  (41)

n=1

Apk(t + s)ds
Tn(t)

For any positive definite matrix and any vector, it holds that
2aTd < dTH'd + aTHa, then we have

m 0
2&7(1) 0

>/
0

m
= l;/—‘[n(t)

+77(1)0A, 01 AT QTE(I)) ds

Apk(t + s)ds

'[n(f)
(;zT(t £ $)OR( +5)
(42)

Based on Theorem 1, when matric £ is Hurwitz stable,
there exists positive definite matrix Q and M that satisfy

ETQ+QE=-M (43)
Employing Lemma 2, we have
0
/ Yt + 5) 0k (t + 5)ds
*Tn(t)
< 05T &1 (1) QR (1) + & (1 — 74 (1)) QR (1 — 74(1)))
(44)

Then based on the above, (41) can ultimately be reduced to

m m
Vik) < —k"Mi + &7 Z Bnk — Z[T*;zTQA,,Q*‘AZQT;z

n=I n=1

+0.50*®T QR + 7T (1 — 1,(1)) QR (t — 7,(1)))]

— D (1= 4R = 1a(0) Buke (1 — 7 (1))

n=1

(45)

Let &(r) = [#(t), k(t — 11(t)), ..., &(t — 7,0 (1))]T, we have:
Vi(®) < ET(QE() (46)
with

Q = diag(Qo, Q1, -+, Q) 47)
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where

Qo

M+ i (Bn —*QA, 0 1ATQT - 0.51*Q>
n=1

Q) = -05t"Q — Bi(1 —d))

Qn = —0.5t"0 — By, (1 — dy) (48)

According to Lyapunov-Krasovskii theorem, to ensure that
system (18) is stable, then matrix  must be negative definite.
It is easy to induce that Q; = (1, ..., m) defined in (48) are
negative definitive. So as long as Qp is negative definitive,
then Q is negative definitive. Consequently, we can derive:

m
o <|| D B, —M]|
n=1

(Necessity): For any delay 0 < 7,(t) < t*, suppose
7,(t) = 0, then x () = Ex(¢) is asymptotically stable when E
is Hurwitz. Hence, Theorem 2 is proved.

1> 04,07 A70T+0.50]1  (49)

n=1

C. Proof of Theorem 3

First define some state vectors as follows:

p() = [p1(@®), -, pnO1", q(0) = [q1(t), -, qn(D]T
(50)
n(@) = @), v, ul) = [wr @), -, un(@©1"
(51
W' (t) = [Whom (), -, ui" (017,
o) = [oi1(t), -, oy®O]" (52)

Then (12) and (14) can be rewritten as:

t
10 = [ (1740 +a@ - @)ar 63

u(t)y = u"""(t) — dsgn(n) (54)
Define V5 () = %nT(t)n(t), and we have:
Va(t) = =6 llnlly +7"w < =5 Inlly + @l
< -G -aW2v, (55)

If 6 > @, we have Vz(t) < 0. Hence, the ISM can reach
n(t) = 0 in finite time. The proof is complete.

D. Proof of Theorem 4

The spacing error is defined as:

ei(t) = pi—1(t) — pi(t) + dii- (56)

Then we obtain ¢;(t) = ri—1(t) — ri(¢), given the fact that
the accelerations of r;(¢) and r;_1 () are bounded, it indicates
that €;(t) € Lo, s0 é;(¢) is uniformly continuous. Besides,

/0 16 (Oldr = lei (00)] — lei (0)] < o0 57)

Therefore, ¢;(t) € L. We further have tlim eit) =0
—00
according to Lemma 3. Consequently, we get é;(t) € L.
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Similarly, we have ¢;(f) € L>. And we further have
tlim ei(t) = 0 based on Lemma 3.
—00
If £ > 0, then |le;(0)]loc = sup;le;(0)] = 0 < ¢.
Moreover, consider that lim ¢; (1) =0, ¢;(0) =0, ¢;(¢t) € L>.
—00

Hence,3v,y > 0, s.t. sup; lej(t)| =v < y. Therefore, the
1€[0,00)
string stability is proved according to Definition 1.
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